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SUMMARY

The present paper makes use of a wave equation formulation of the primitive shallow water equations to simulate
one-dimensional free surface flow. A numerical formulation of the boundary element method is then developed
to solve the wave continuity equation using a time-dependent fundamental solution, while an explicit finite
difference scheme is used to derive velocities from the primitive momentum equation. One-dimensional free
surface flows in open channels are treated and the results compared with analytical and numerical solutions.
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1. INTRODUCTION

One of the most interesting areas of application of numerical methods in hydraulics is the simulation
of free surface flow in shallow waters. The equations describing this type of flow are obtained by
integrating the Navier-Stokes equations for conservation of mass and momentum through the vertical
column of fluid.

Several of the early finite element tidal models based on the primitive shallow water equations
were plagued by spurious spatial oscillations. Field-scale simulations invariably required artificial
viscosity or numerical damping to achieve stable solutiohs.

A successful approach to eliminate these node-to-node oscillations was developed by Lynch and
Gray?2 This approach, called the wave equation model, is based on a reformulation of the primitive
continuity equation into a second-order wave continuity form. Because of the advantageous
numerical properties, the approach received considerable attention for finite element tidal
computations.

Although the boundary element method (BEM) has proven to be a powerful alternative for solution
of wave propagation problenfs, its application to hyperbolic-type equations is still limited,
especially in the presence of non-linearities. A formulation of the BEM for one-dimensional wave
propagation problems was presented by Benmanebat® Using the fundamental solution of the
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wave operator, an integral equation was obtained after some necessary transformations to evaluate
integrals involving Heaviside and Dirac delta functions. The BEM formulation was then employed to
analyse simple problems of free surface flow in open rectangular chérinelghich convective

effects were neglected.

In the present paper the BEM formulation of the one-dimensional wave continuity equation is
extended to include non-linear effects. The non-homogeneous part of this equation is treated as a
known term by using values obtained from the previous time step. An iteration procedure is
necessary, however, because of the presence of non-linear effects. The formulation uses a finite
difference scheme to solve the momentum equation.

Finally, several applications are presented to highlight some of the potentialities of this approach in
solving free surface flow in open channels.

2. GOVERNING EQUATIONS
2.1. Primitive shallow water equations

The shallow water equations describing the one-dimensional free surface flow in a rectangular
channel are obtained by integrating the equations for conservation of mass and momentum through
the vertical column of fluid under the following assumptions:

1. The density of the fluid is constant.
2. The viscosity term is negligible.
3. The vertical fluid accelerations are negligible.

The following set of coupled equations is then obtained:

continuity equation

oh a(h
L= Ay M
at X
momentum equation
au au o
M=—+U—+0g— = 2
3t+u3x+gax+w 0, 2

whereh is the total fluid depthu is the velocity,g is the gravitational acceleration, is the free
surface elevation andis the bottom friction parameter.
The momentum equation can also be formulated in conservative form as

M®=hM +uL =0
or in expanded form as

a(hu)  a(huu)
ot X

on
—i—gh&—krhu_o. (3)

2.2. Wave equation formulation

The wave equation formulation of the primitive shallow water equations was first introduced by
Lynch and Gray’ This approach is based on a reformulation of the continuity equation into a second-
order in time and space propagation form.
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The wave equation form can be written in operator notatich as
oL oM°©
at ox

in which L andM are the continuity and momentum operators respectively. The solution of equation
(4) in conjunction with (2) will lead to the same solution of (1) and (2) under the conditiorLtad}
att=0.2 For the BEM formulation the additional initial condition is equivalent to the specification of

an/ot att=0.
Substitution of the continuity and momentum operators in equation (4) leads to

#h_ 3 N #(huu)  oh
a2~ T ax | ox

+17L =0, 4)

ot
hu—. 5
@ T MM ©)

Leth=H — h,+#, in whichH is the average depth atg is the bottom variation, both measured
from a reference datuni-(gure J). Equation (5) then becomes

2 2 2
Gl CzM:gf’(an)_g;((h an>+8(huu)_ 8—’7+hu% (6)

w2 e Tax\Tax b ox w at x

in which ¢ = /(gH) is the wave celerity.
For the numerical solution with the BEM the above equation will be treated as a non-homogeneous
wave equation with a known right-hand side term which is a function of several variables, in the form

Fn_ L i
— —C—=B|{—,—.,u,h,...]). 7
ot? ox? <ax ot ) 0

3. BEM FORMULATION

The BEM formulation proposed in this paper consists of using the fundamental solution of the wave
equation and treating the non-homogeneous ®ias known by evaluating it using values calculated
at the previous time step. This procedure is particularly efficient when the wave equation can be
linearized and uncoupled from the momentum equation.

The starting weighted residual statement corresponding to equation (7) can be written as

(@ 3 tt oL
N 20N g .
Jo Jo(ﬁtz ¢ axz)” dxdt L L By*dxdt, ®)

wherelL is the region length antt =tz + ¢, ¢ being a small arbitrary parameter. This procedure
avoids terminating the integrations exactly at the peak of a Dirac delta furiction.

z=0 z=1L

Figure 1. Sketch of one-dimensional open channel flow
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In the above expression* is the fundamental solution of the one-dimensional wave operator,
given by

. 1
n = _%H[C(tF -]

in which H is the Heaviside function and= |x — s|, s andx indicating the source and field point
positions respectively.
Integrating the second-order derivatives in (8) twice by parts, the following equation is obtained:

t; L 82 * 82 * L 9 an* t::r t:{ 9 an* L t;r L
J J 1’ ndxdt+J L dx—cZJ iy 2 dt:[ JBn*dxdt.
o Jo\ ot ox2 ol ot at |, 0 X X o Jo Jo

©
The causality property of the Heaviside functibhe.
Hlc(te —t)—r]=0 if ctg—1t)<r,
leads to
on*
wtete T tete
n*| 0 and g | 0.
The following integral equation is then obtained:
te an* an L L a;,’* 87’] te L
s,tp)=¢? — - = dt ——n*=| dx— By*dxdt. 10
n(s. tg) L [n ! ax]o +JO [n el 3tlo X L L n*dx (10)
Noticing that the fundamental solutiorf can be written in the form
1 .
) —ZH[X—(S—C(tF—t))] if x<s,
n = 1

—%{1— Hx —(s+c(tg — )]} if x>s,

the properties of the Heaviside and Dirac delta functions can be used to evaluate the derivatives of
with respect to time and space as follows:

on* 190 10
= ———H[-ct+ctr —1r=———{1 —HJfct—(ctr —r
o = e Hletcte =1 = —o 2 (1~ Hlet — (ete — 1))

=20lc(t —tp) + rl =30[c(te —t) — 1],

1 :
o o= —cte )] if x<s,

0X

Zic(s[x C(sHclte—t)]  if x>s.

Using the above expressions to evaluate the integrals in equation (10) and ass@migand
(9n/dt)(x, 0) as known initial conditions, equation (10) becorfes

¢ [ (97 oy =3/ gy
165 t6) =3 0L te = (L= 9)/C) +n(0. te —5/c] +3 J AL, vdt — J 0, tydt
0 ox 0 ox
1 S+Cte 87’] te (L
+3[n(s — cte, 0) + n(s + ctg, 0)] + — [ —(x, 0)dx — [ J By *dxdt. (11)
2C Js ¢, Ot Jo Jo
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The terms involved in the above expression are only valid when all arguments are physically
meaningful. Hence time and space co-ordinates must be within the domain of interest, i.e.
[0, L] x [0, te], and the integrals must have their lower bound smaller than the upper one, otherwise
they are equal to zero.

Singularities occurring in the integrals involving the Dirac delta function at paatst: or
L — cte are avoided by using an appropriate transformation of the funetianthese points®

3.1. Computation of domain integral

For the numerical computation of the domain integral the segment] [i3, discretized intoM
elements and the time dimension is subdivided iRttme steps. The non-homogeneous téBrs
then assumed to vary within each element and each time step according to space and time
interpolation functions such that
F-1M-1

B(x, t) = J_;) > ¢ (OY;(0BL,

WhereB{ = B(X, tj).
The domain integral

e (L
D= J J Bi*dxdt (12)
becomes, after discretization,

D

F-1M-1 j

_Z% Z;J BiDij, (13)
j=0 i=

with

te L
0y = | [ domoora
0 Jo
In this work both constant and linear interpolation functions are tested.

If constant time interpolation functions are used, the body force Bistreated as a known term
by using values obtained from the previous time step. In this ¢&gpis defined in the form

i 1 if t<t<t
I(t) = (A X
- { 0 otherwise
The integralD; then becomes
1 i (L
Dj = _?CJ J Yi(X)H[c(te —t) — rldxdt. (14)
0

]

The above procedure is simple and particularly efficient for linear problems. However, if non-
linear effects are important, an iterative technique is required for the solution of the system of
equations. In this case much improved results may be obtained by using linear time interpolation
functions.

The accuracy of the results can also be improved by keeping constant time interpolation functions
and using the mean value Bfin the time interval such that
3[B(X. ) + B(X, tj;1)] if ty<t<t,; and j<F-1,

Bi(x) = {



6 N. BENMANSOUR, D. OUAZAR AND L. C. WROBEL
For constant space interpolation functioig(x) is defined in the form

1t X <X < Xigr
Vi) = {O otherwise.

The integral (14) then reduces to

1 (v X
D; = _%L in Hlc(te — t) — r]dxdt,

which can be evaluated analytically as described in Reference 10.
For linear space interpolation functions, in which cgs&) is defined in the form

X—Xi_q1 .
=L x, < x <X,
Xj — Xj_1
_ ) X=X .
Vi) = T 78 Gr o <x < x;
TN i+1»
Xit1 — X
0 otherwise,

the integral (14) may be simplified by using the causality property of the Heaviside function:

i1 (X2
D L Jt J twi(x)dxdt, (15)

i =5
2 G IX®

whereX;(t) = s — c(tg — t) and X,(t) = s + c(tz — t). The integral (15) can then be written as

D L ("™ et
ij—_EL (tdt,

where

Xa ()

FO= [ pioodx

Xy (1)

The integrals in this case are evaluated numerically using standard Gaussian quadrature for the
function F(t).

Simple finite difference schemes are used to calculate first- and second-order derivatives that
appear in the ternB (see equation (6)). The following expressions are employed for the space
derivatives at point, 1<i < M:

an : _ =l
oX 2AX

Phun]  (huwl,; — 2(huw)] + (huu)!
x| (Ax)? '



SHALLOW WATER WAVE PROPAGATION 7

At the end points,

an j . —3n) + 40} —n}
x|, 2Ax ’

[az(huu)]j _ 2(huuy} — 5(hu) b + 4(huu)’, — (huw)’,

x|, (Ax)?

an ! :3’7Mj_4’7JM—1+’7]M—2
X |y 2Ax '

[82(huu)T _2(huu)}, — 5(huu)d, ; + 4huuyl, , — (huwyd,
oy (AX)? '
A second-order finite difference approximation is also used to compute the time derivative in the
form
(=t gl -
I:%T: AL for j=>3,
i nl-al™

At

for j=2

3.2. Finite difference solution of momentum equation

Although the solution of the wave equation is accurately obtained by the boundary element
formulation, the numerical representation of the momentum equation is very important in
determining the evolution of the numerical simulation.

Kinnmark and Gra¥* showed the importance of a proper time weighting in the discretization of
the momentum equation. Using Fourier analysis, they concluded that a three-time-level scheme,
especially when centred in time, can result in step-by-step temporal oscillations in the velocity
solution, although similar oscillations in the surface elevation are eliminated by the wave equation.
By using a two-time-level scheme for the time derivatives, spuridusZcillations were completely
removed from the velocity solution. These findings were subsequently confirmed by Féfemdn
Laible™

Consequently, a simple differencing scheme of the momentum equation between timé& landls
F — 1 is used for the velocity calculations. Each term in the momentum equation (2) is approximated
as follows:

uf = o0uf + (1 —0uf T,

aul” au” au]™t
—| =¥|u— 1-¥)u—
g, = vlea, v lva),

in which 0, « and¥ are time-weighting parameters.
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Replacing each term by its finite difference approximation, the momentum equation (2) may be
written in the form

1" "t
uf (1 + At =uf 1 — At(‘PuiF [&} +(1-wuf? [&]
i i

F-1

o F on
o] +oa- 5]

+771a - 0)uiF‘l>. (16)

4. SOLUTION PROCEDURE

The general solution procedure consists of solving the wave continuity equation for the elevation
using a boundary element formulation, while the velocities are derived from the primitive momentum
equation by a finite difference technique. At each time step these equations are solved sequentially
rather than simultaneously. For this the domain t&im the BEM analysis is evaluated using values
from the previous time step.

The above procedure is particularly efficient in that no iterations are required for equations
involving mild non-linearities. In this case the teBrcan be accurately computed and the convective
terms in the momentum equation may be evaluated explicitly.

On the other hand, if convective effects are important and the surface eleyatiowt negligible
in comparison with the total water depth, an iterative technique is required, as described next.

4.1. lterative technique
For non-linear problems the following iterative procedure is employed at eachtgime

1. With known values of velocity and elevation from the previous time step, calculate the domain
integral at each boundary and internal point.

. The wave equation is used to evaluate either d;/dx at boundary points.

3. The wave equation is used to evaluate values af all internal points.

4. The momentum equation is used to compute values of the velocity at boundary and internal
points. The convective term is evaluated explicitly by setting the valu¥ & zero.

5. Using values of; andu at the new time level, the teri is recomputed. The domain integrals
are now evaluated considering a mean valu® afi the interval fr — At, tg].

6. The wave equation is again applied to compute updated valuestoboundary and internal
points.

7. The momentum equation is again applied to compute values of the velocity by considering an
implicit approximation of all the terms in the equation.

8. The convergence ofy and u is examined at all boundary and internal points. Unless
convergence is achieved, the procedure is repeated from step 5 with the updated valaed of
u.

N

Since the initial values of andu are those from the previous time step, only one or two iterations
are usually necessary even for highly non-linear problems.
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5. APPLICATIONS

In order to verify the accuracy and efficiency of the numerical scheme previously developed, the
model is applied to the study of free surface flow in open rectangular channels. Initially the model
was applied to some standard test cases with known analytical solltigithough such solutions

are only available for linear problems, they are a valuable tool for assessing various aspects of the
performance of the numerical model.

The model was next applied to study the effect of non-linear forcing terms for two problems. The
first consists of the propagation of a wave front in a horizontal channel and is usually considered as an
extreme test situation for numerical methddsthe second case deals with the routing of a flood
wave down a rectangular chantfeand provides a good test for the iterative procedure developed
here.

5.1. Linear problems

The first series of tests deals with long waves propagating in open channels with the following
configurations:

(a) constant depth and no bottom friction

(b) constant depth and linearized bottom friction

(c) quadratic bottom variation and no friction

(d) quadratic bottom variation and linearized friction.

In all cases the channel is closed at one end and subject to a sinusoidal forcing at the other end
where the water level is prescribed as a boundary condition. Analytical solutions have been presented
by Lynch and Gra}/* assuming that convective terms are neglected aphx)® ~ 0.

5.1.1. Channel with constant depifhe first application is a simple rectangular channel of length
L=160 m and constant depth=2 m, subject to an incident wave of amplituge=0-1 m and
period T=200 s prescribed at the open end, as showhidure 2

The analytical solution is given B

VI(X, t) = Re (1']0 %eiwt) ,

wherew =27/T, L=X, — X, and 2 = (0? — iw1)/gH.
Two different values of the linearized bottom friction coefficierdre considered:

_long sin[B(x — xy)] eiwt)

ux, t):Re( BH  cos(BL)

(@) =0, i.e. the case of no bottom friction

(b) =001 s!.
—>* N(L.9 = o cos{@1)
Vs
1 7 <
u=07 5 \
1 H =2m
V
. . Y.,
7 I fz 7 7 /3 rd 7 "1 7 /7 fg
I I
- >
X1 L=160m X2

Figure 2. Rectangular open channel of constant depth
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For the first case the forcing terBivanishes and no domain discretization is necessary. Thus the
BEM solution of the wave equation produces a system of two equationsdbox =0 anddy/ox at
x=L. After solution of this system, values gfat internal points can be calculated if required.

This is a very simple case which provides little indication as to the ability of the model to simulate
real cases involving complex geometries or non-linear effects. However, this test can provide
guidelines for the choice of the value of the Courant number and other parameters used in the
numerical procedure.

Table | compares numerical and analytical results/faat x=0 andL/2. It can be seen that the
numerical results exactly match the analytical solution, since space and time integrations need not be
performed in this particular case. A time stAp=9 s was used in the analysis.

Table Il shows results for the velocity at poixit= L obtained by the finite difference scheme with a
discretization of four segments, i.Ax=L/4, for three different values of the Courant number
Cr=cAt/Ax. Since the depth is constant ands small compared witl, thenH =h and the wave
celerity is given byc = /(gH) = 4-429 m s™1. The time-weighting parameterwas taken as-6. It
can be seen that, as expected, better results are obtain€d for1.-0.

Next bottom friction effects were considered by setting:0-01 s*. In this case the BEM
formulation presents a domain integral wBh= —1(d5/dt). To compute this term, a discretization
with Ax=L/4 was introduced and the elevations at poixtsO andL/2 are plotted inFigure 3
Excellent agreement between numerical results obtained@vith1-0 and the analytical solution can
be noticed.

Figure 4shows results for the water velocity at two different points of the chamnel,/2 andL.
Several different combinations of parametem@nd( were tested: their optimal values were found to
lie between & and Q7 for « and between @ and Q7 for 0. The results inFigure 4were obtained
using bothz and 6 equal to 05.

Table I. Elevation results (metres) foe=0

x=0 x=L/2
t(s) BEM Analytical BEM Analytical
27 0155 0155 0131 0131
81 —0-194 —0-194 —0-164 —0-164
162 0086 0086 0073 0073
270 —0-138 —0-138 —0-116 —0-116
378 0181 0181 0152 0152

Table Il. Velocity results (metres per second) fe£ 0 at pointx=L

FDM
t(s) Cr=05 Cr=10 Cr=15 Analytical
27 0354 0354 0354 0354
405 0446 0439 0451
81 0265 0265 0261 0265
1215 —0-290 —0-270 —0-295
162 —0-439 —0-439 —0-431 —0-439
2295 0381 0352 0377
270 0382 0382 0398 0382

378 —0-301 —0-301 —0-320 —0-301
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Figure 3. BEM elevation results for channel with constant Figure 4. FDM velocity results for channel with constant
depth,t=0.01 s! depth,r=0.01 s*

5.1.2. Channel with quadratic bottom variatioThis application concerns a channel with
guadratic bottom variation, with water depth 1 m at the closed end and 2 m at the open end, subject to
the same sinusoidal wave ashigure 2

The analytical solution for this case'fs

) iw .
n(x, t) = Re[(AX® + Bx%2)e'"], ux,t) = Re (ﬁZH (Asp&t 4 BSZXSZ_l)e'“’t>,
0
where
_ NoSoXy B — —1pS1Xy’
’
2 2 w® — 1wt
$1.8, = —3 £ /(5 — ). H(X) = HoxX?, B :THO.

The analysis takes into consideration the channel reach between peint386274 m and
X = 546274 m with water depths 1 and 2 m respectively. These valugs afidx, are used in the
analytical solution, together withlo=6-702 x 10% m~%. For the numerical solution the channel
end points are ak=0 andx=L =160 m, with h,=1 — x*/25,600 m. The celerity used in the
computations i€ = /(gH), whereH =2 m.

Again the same values of the linearized bottom friction coefficiesute considered, i.e.=0 and
0.01 s1. The discretization adopted employed only four segments Aixe= 40 m andAt=9 s,
giving a Courant numbe€r=1.

For the case of =0 the forcing ternB in equation (7) is a function df,dy/dx only. BEM results
for the elevation and FDM results for the velocity are shownFigures 5and 6 respectively,
compared with the analytical solution. The agreement is excellent in both cases.

Finally the case of =0.01 s was considered. Thus both linear domain terms in equation (7) are
simultaneously included. Again excellent results are obtained from the numerical analysis, as shown
in Figures 7and 8. The velocity results were obtained with batltand 6 equal to 05.
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Figure 5. BEM elevation results for channel with quadraticFigure 6. FDM velocity results for channel with quadratic
bottom variationg =0 bottom variationg =0

5.2. Propagation of a wave front in a frictionless channel

This test, described in Reference 15, consists of the propagation of a wave front in a horizontal,
frictionless channel 5000 m long. The channel is open at the left boundary, where the water level is
suddenly raised from the initial state of rest of 10 m tellfh within one time step (séégure 9. At
the right end the channel is closed and the velocity is set to zero.

This problem is considered to be an extreme test situation for numerical models, as the exact
solution is a step function for the state variables. However, this situation is accurately and efficiently
reproduced by the BEM, since the numerical solution procedure for the wave equation is itself based
on the Heaviside step function. Therefore, by using the boundary integral expression (11) and
applying the initial and boundary conditions of this particular case, the exact solutignafoany
point s along the channel is found in the form

n(s, te) = n(0, tg —s/c) +3[n(L, tr —a+s/c) —n(L, tr —a—s/c)],

0.40

0.60
0.30
0.40
0.20
0.20
~ 0.10 /(ﬂ\
1S ~
-
0.00 £ 0.00
C ~—
.0 >
= —0.10 =
S -g -0.20
[]
o —0.20 g
> _0.40
~0.30
B = 80m (FDM)
~0.40 060 = gAnalyticul)
“iaiex = 160m EFDM) \
x = 160m (Analytical
=0.50 FrrrrrrTr T T e T e -0.80 .,.,yt.mﬂ
' 500 0 00 300 400 500
Time (s) Time (s)

Figure 7. BEM elevation results for channel with quadratic ~ Figure 8. FDM velocity results for channel with quadratic
bottom variationg =0.01 s! bottom variationg =0.01 s*
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Figure 9. Horizontal, frictionless channel

with a=L/c. At the boundaryk =L this expression reduces to
n(L,te) =270, tr —a) —n(L, tr — 2a).

The above expression corresponds to a periodic step function of amptitad®-1+0-1 m and
period T=2010 s. Similarly, the exact solution for the dischargeat0 is Q= +1 m®>s L.

Consequently, if non-linear terms are neglected, the BEM formulation reproduces the exact
solution and no numerical analysis is required. Velocity results were obtained with the finite
difference scheme using a discretizationAof=L/5 and a time stepAt =100 s. The values of the
discharge at the upstream end were found t®Qbe + 0-99753 ni s L.

If non-linear terms are included, the BEM formulation requires a domain integration. The same
discretization and time step as before were used for the numerical solution.

BEM results for the water depth at the downstream end and FDM results for the discharge at the
upstream end are shown kigures 10and 11 respectively. Both linear and non-linear cases are
plotted. It can be concluded from the results that the convective term introduces very small
differences in the numerical solutions.

10.30 1 1.50

Linear case —— Linear case
~++++ Non—linear case =+ Non—linear case

,(/T 1.00 H ==

E 10.20 ~

~ M
E 050

| -

- i

-6‘ 10.10 x 0.00
-

< S}

o
O -0.50

9]

° 2

N 10.00 E

2 o]

‘6’ @ ~1.00 H

= o

.90 T T T T T T T T T J —-1.50 T T T T T T T T T U
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time (s) Time (s)

Figure 10. Water depth results for linear and non-linear Figure 11. Water discharge results for linear and non-linear
cases cases
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Figure 12. Water discharge at upstream, middle and downstream sections

5.3. Routing of a triangular hydrograph

This final test, taken from Reference 16, consists of following the translation of a flood wave down
a rectangular channel. The channel is 20 ft wide and 10,560 ft long, carrying a steady uniform
discharge of 833 ft®s! at 6 ft depth and subject to an upstream flood wave which increases
linearly over a period of 20 min and has a peak of 208Gsft. This upstream flow then decreases
linearly from the peak to the initial discharge in an additional period of 40 min. The channel has a
bottom slope of @015 and an estimated Manning coefficianof 0-02.

In this test the full non-linear equations must be considered, since convective terms are important
and the elevation is of the same order of magnitude as the uniform water depthherefore the
iterative scheme previously described is necessary to predict a correct and stable solution.

Since the numerical model employed here deals with the velocity and water depth as dependent
variables, the boundary conditions applied in this case are taken from the upstream values of
velocities and the downstream values of water depth given in Reference 16.

The explicit method used in Reference 16 utilizéid=2 s andAx= 528 ft. Herein the samAx
was retained but a much larga&t =30 s was used. Results obtained with=-0.5, « =0-6 and
Y =0-6 are presented iRigure 12and show very good agreement with the results given in Reference
16. The small differences in results are attributed to the boundary conditions using velocities and
depths instead of discharges.

6. CONCLUSIONS

This paper presented a wave equation formulation for one-dimensional open channel flow. The
numerical solution of the wave continuity equation was carried out by the BEM, while the
momentum equation was solved using an FDM scheme.

For the BEM formulation the fundamental solution of the wave equation was used and bottom
friction, variable bathymetry and non-linear effects were considered through a domain discretization.
The corresponding terms were treated as known in each time step by using, in their calculation,
values obtained at the previous step. For linear problems an iterative scheme was attempted, but the
difference in numerical results was negligible, confirming the efficiency of this time-delayed
approximation. Non-linear problems, however, required an iterative scheme which proved to
converge quickly.
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The FDM results were obtained using an implicit scheme with good accuracy. Several different

values of the time-weighting parameters were tested and empirical bounds set.

11.
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